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Abstract. To foster dialogue and collaboration among young researchers, the BIMSA quantum team has ini-

tiated a call for young mathematical experts to present problems linked to quantum theory. This collection of

notes comprises challenges in operator theory, noncommutative analysis, vertex operator algebras, conformal field

theory, probability theory and quantum information. These thought-provoking problems have been contributed

by speakers and participants who attended the “Mathematical Aspects of Quantum Theory” conference in Sanya,

Hainan, from January 12 to January 17, 2024, co-hosted by Tsinghua University and BIMSA.
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1. Problems on Chiral de Rham Complex (Contributed by Xuanzhong Dai)

Chiral de Rham complex introduced by Malikov et al. in 1998, is a sheaf of topological vertex

algebras on any complex analytic manifold or non-singular algebraic variety X [MSV]. The sections

of the chiral de Rham complex on each affine open chart is isomorphic to dimX copies of βγ ´ bc

system. Starting from the vertex algebra of global sections of chiral de Rham complex on the upper

half plane, we consider the subspace of Γ-invariant sections that are meromorphic at the cusps. The

space is again a vertex operator algebra, with a linear basis consisting of lifting formulas of meromorphic

modular forms. As the fractional linear transformation on H induces an SLp2,Rq-action on the chiral

de Rham complex, we consider the vertex algebra of Γ-invariant global sections that are meromorphic

at the cusps, denoted by MpH,Γq. It is surprising to see that the Γ-invariant vertex algebra is simple

regardless of congruence subgroup Γ [DS].

The Rankin-Cohen bracket is a family of bilinear operations, which sends two modular forms f of

weight k and h of weight l, to a modular form rf, hsn of weight k ` l ` 2n. Let Γ Ă SLp2,Zq be a

congruence subgroup, and f P MkpΓq, h P MlpΓq, then the n-th Rankin-Cohen bracket is given by

rf, hsn “
1

p2πiqn

ÿ

r`s“n

p´1qr
ˆ

n ` k ´ 1

s

˙ˆ

n ` l ´ 1

r

˙

f prqpτqhpsqpτq.

It was speculated by W. Eholzer, Y. Manin and D. Zagier long time ago that the Rankin-Cohen brackets

are related to vertex operator algebras [Z]. Recently we give a precise formulation of the nontrivial

relation in the sense that the vertex operations are totally determined by the modified Rankin-Cohen

bracket in [D]. Note that the Rankin-Cohen bracket exhibits certain decay property in the presence

of constant functions and thus we modify the Rankin-Cohen brackets specifically when a constant

modular form is involved. It is shown in [NSZ] that the modified Rankin-Cohen brackets also appear

in the description of modular linear differential operators.

Problem 1.1. How to construct irreducible modules of MpH,Γq?

Problem 1.2. Can we obtain some new operators on modular forms from vertex operations?

Problem 1.3. How to relate the axioms of the Rankin-Cohen brackets with those of vertex operator

algebras?
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2. Problems on Noncommtuative Carleson’s theorem (Contributed by Guixiang Hong)

The Lusin conjecture, namely the partial summations of trigonometric series of any square inte-

grable function on the unit circle should converge almost everywhere, had ever been the most famous

open problem in Fourier analysis. This conjecture was posed by Luzin in 1913 after Kolmogorov’s

counterexample for integrable functions, and had been resolved by Carleson in 1966 [1]. Carleson ob-

tained the pointwise convergence by establishing a maximal inequality, that is the L2-boundedness of

Carleson’s maximal operator. An alternative proof of Carleson’s theorem was provided by Fefferman

[2], pioneering a set of ideas called time-frequency analysis. Lacey and Thiele [11] provided the first

independent proof on the line of the boundedness of Carleson’s maximal operator, which improves in

some ways that of Fefferman’s [2], by which it was inspired. The proof of Lacey and Thiele was a

byproduct of their work [9, 10] on the boundedness of the bilinear Hilbert transforms. Together with

other techniques such as transference principle, the time-frequency analysis has been used to study

for instance ergodic theory, and thus nowdays it still play an important role in harmonic analysis and

beyond.

On the other hand, noncommtuative martingale theory and noncommtuative analysis has gained

rapid development since the seminal work due to Pisier, Xu and Junge on noncommutative Burkholder-

Gundy and Doob’s inequalities [12, 7]. In the last two decades, there appear a series of breakthrough

work such as the theory of BMO spaces, Calderón-Zygmund operators and Fourier-Shur multipliers

etc.. In particular, several maximal inequalities such as Dunford-Schwartz’s maximal ergodic theorem

[8], maximal ergodic theorem for actions of groups of polynomial growth [3, 5], pointwise convergence

of noncommutative Fourier series [6] and noncommutative maximal inequalities for Calderón-Zygmund

operators [4] have been successfully built in this new framework. However, whether there holds a

noncommutative version of Carleson’s theorem is an open problem circulated in the noncommutative

analysis community, even though many tools and ideas have been developed in this setting as above.

Let us introduce some notations and formulate the problem explicitly. Let pM, τq be a noncommu-

tative measure space equipped with a normal semifinite tracial state τ , and SM be the weak-˚ dense

ideal of M with elements of finite trace support. We refer the reader to [13] for the resulting non-

commutative Lp spaces. Given a SM-valued integrable function f on the unit circle T, the Dirichlet

summation method is defined as

pDNfqpzq “

N
ÿ

k“´N

f̂pkqzk, z P T, N P N,

where f̂ denotes the Fourier transform of f .

When M “ C, Carlson’s theorem states that DNf Ñ f almost everywhere as N Ñ 8.

Conjecture. Let f P L2pT;L2pMqq, then DNf Ñ f bilaterally almost uniformly as N Ñ 8. More

precisely, given any ε ą 0, there exist a projection e in L8pTqbM such that τ
ş

Tp1 ´ eq ă ε and

}epDNf ´ fqe}8 Ñ 0.
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3. Problems on ISR Property (Contributed by Yongle Jiang)

Let Γ be a lattice in a higher-rank simple Lie group G with trivial center, e.g. Γ “ SL3pZq, G “

SL3pRq. Recall that the celebrated Margulis’ Normal Subgroup Theorem says that every normal

subgroup in Γ is either trivial or of finite index.

In [1], Alekseev and Brugger considered a natural generalization of this to the group von Neumann

algebra setting by asking whether every regular subfactor P of LpΓq is trivial or of finite index. Here

P is regular if the normalizer of P , i.e. those unitaries u P LpΓq such that uPu˚ “ P , generates LpΓq

as a von Neumann algebra. In practice, we further assume that Γ is contained in the normalizer of P ,

i.e. P is Γ-invariant. In [5], Kalantar and Panagopoulos proved that for the above Γ, every Γ-invariant

von Neumann subalgebra is of the form LpΛq for some normal subgroup Λ ◁ Γ. This motivated us to

introduce the following notion in [2].

Definition 3.1. Let G be a countable discrete group. We say G has the invariant von Neumann

subalgebras rigidity (ISR for short) property if every G-invariant von Neumann subalgebra P Ď LpGq

is of the form P “ LpHq for some normal subgroup H ◁G.

Besides the groups considered in [5], two typical groups with the ISR property are the non-abelian

free group F2 [2, 3] and the finitary infinite permutation group S8 [4]. For more groups with the ISR

property, see [2, 5, 3, 4]. It is also known that being icc is a necessary but not sufficient condition for

an infinite group to have the ISR property, see [2, Proposition 3.1 and Example 3.5].

Problem 3.1. Which infinite conjugate class (ICC) groups G have the ISR property? The conjecture

is that:

‚ If G is non-amenable, then G has the ISR property iff G has no amenable normal subgroups

other than teu.

‚ If G is amenable, then G has the ISR property iff G has no abelian normal subgroups other than

teu.

The following question was recorded as [2, Question 4.3]. For partial results, see [2, Theorem 1.4].

Problem 3.2. If two infinite groups G and H have the ISR property, does G ˆ H still have the ISR

property?
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4. Problems on Dilations and Applications of Operator-valued Measure (Contributed

by Qianfeng Hu and Rui Liu)

Since 1999, Casazza et al.[4] introduced Banach space Schauder frame, the dilation techniques of

frames to base, or more generally, projection valued dilations for operator-valued measure or homo-

morphism dilation for bounded linear map on operator algebra [10, 9, 7] became a useful and efficient

tool to investigate the bounded approximation property (BAP)[12, 15] and its Lipschitz version [5, 16],

which supplemented the results by Johnson, Rosenthal, and Zippin [13]. To generalize the fundamental

James theorems on base and reflexivity [11] in the general context, Beanland et al.[3] showed that a

Schauder frame for any separable Banach space is shrinking if and only if it has an associated space

with a shrinking basis, and that a Schauder frame for any separable Banach space is shrinking and

boundedly complete if and only if it has a reflexive associated space. It’s still open for unconditional

(Schauder) frames and bases for reflexive Banach spaces. If, more generally, we consider the operator-

valued measure, in particular, the ones induced unconditional frames, then it is natural to consider the

duality dilation problem of operator-valued measures on Banach spaces.

Question 1. Let X be a reflexive Banach space and pΩ,Σq be a measurable space. Suppose E : Σ Ñ

BpXq is an operator-valued measure, is there a reflexive Banach space and projection valued measure

F and bounded linear maps T : X Ñ Z, S : Z Ñ X such that

EpBq “ SF pBqT

for every B P Σ, that is, can every operator-valued measure on a reflexive Banach space be dilated to a

projection-valued measure on another reflexive Banach space?

Frame quantum detection problem [6, 2] asks to characterize the informationally completeness of

positive operator-valued measure (POVM) induced by Hilbert space (discrete or continuous)frames.

We call such frames quantum injective. That is, to find a frame such that frame-induced POVM V

with the property that tr pρ1V pEqq “ tr pρ2V pEqq for all E P Σ implies that ρ1 “ ρ2.

Many interesting or important frames have good structure. The group frames [8, 1] the orbit of

a single window vector or function under the unitary representation of a group, have been studied

extensively. As the injectivity of the finite abelian group frame has been shown in Li et.al [14], it

remains to show the injectivity of other group frames. Through POVMs, the quantum detection

problem can be reduced to characterize the properties of window vectors or functions.

Question 2. Under what conditions of the window vectors or functions of group frames such that

the POVMs induced by those group frames are informationally complete? Like, finite non-abelian

group: the dihedral group, metacyclic group, or time-frequency representation of R2 or, the wavelet

representation of Affine group Aff “ R ˆ R˚, etc.



8 BIMSA QUANTUM TEAM

Recall the frame phase retrieval problem[14]: Given a frame txjujPJ , whether the phase-less mea-

surements

t|xx, xjy| : j P J u

uniquely determines x (module a scalar)? i.e., |xx, xjy| “ |xy, xjy| for every j P J implies that x “ λy

for some |λ| “ 1? Note that the quantum injectivity of frames implies pure state injectivity, which is

equivalent to the phase retrieval problem [6].

Question 3. Given a discrete group G and an irreducible unitary representation π, is there a window

vector φ such that the group frame tπpgqφugPG is phase-retrievable but not quantum injective, or it

possible that every phase-retrievable group frame gives quantum injectivity.
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5. Problems on Density of Reducible Operators in Factors (Contributed by Rui Shi)

In MnpCq, by Jordan canonical form theorem, every n ˆ n matrix a is similar to a direct sum of

Jordan blocks. This means there exists an invertible matrix x in MnpCq such that

(5.1) x´1ax “

¨

˚

˚

˝

J1

. . .

Jp

˛

‹

‹

‚

where each block Jk is a square matrix of the form

(5.2) Jk “

¨

˚

˚

˚

˚

˝

λk 1 ¨ ¨ ¨ 0

0 λk ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ λk

˛

‹

‹

‹

‹

‚

Note that no non-trivial Jordan block can be written as a direct sum of two Jordan blocks. In this

sense, Jordan blocks can be viewed as fundamental building elements of general matrices. In other

words, a Jordan block has no nontrivial reducing subspaces.

Let H be a nonzero complex separable Hilbert space. Inspired by Jordan matrix in MnpCq, we

introduce irreducible operators in BpHq.

Definition 5.1. An operator a in BpHq is said to be reducible, if there exists a nontrivial projection p

in BpHq satisfying

(5.3) pa “ ap.

Otherwise, a is said to be irreducible.

In 1968, Paul Halmos proved in [1] that irreducible operators form a } ¨ }-dense Gδ subset of BpHq.

In 1970, he proposed the following problem in [2].

Halmos’ 8th Problem. Do reducible operators form a } ¨ }-dense Gδ subset of BpHq?

It is clear to check that in MnpCq, reducible operators are nowhere dense. But it is not easy to

answer the question on infinite-dimensional separable Hilbert space.

In 1976, Dan Voiculescu proved the non-commutative Weyl-von Neumann theorem in [8]. As its

application, he answered Halmos’ 8th problem affirmatively by proving that every operator in BpHq is

a } ¨ }-limit of reducible operators.

In the field of von Neumann algebras, BpHq is a type I factor. Recall that a ˚-subalgebra M of

BpHq is said to be a von Neumann algebra if M contains the identity operator I and closed in the

weak-operator topology. Furthermore, a von Neumann algebra M is said to be a factor if

(5.4) M X M1 – C
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where M :“ tx P BpHq : xy “ yx, for all y P Mu.

Francis Murray and John von Neumann developed the fundamental theory of von Neumann algebras

in [3, 4, 5, 6, 7] and classified factors in three types. It is also natural to introduce irreducible operators

in factors.

Definition 5.2. Let M be a factor with separable predual. an operator a in M is said to be reducible

in M if there exists a nontrivial projection p in M such that pa “ ap. Otherwise, a is said to be

irreducible in M.

In 2018, Junsheng Fang, Rui Shi, and Shilin Wen proved in [9] that for every factor M with separable

predual, irreducible operators form a } ¨ }-dense subset in M.

Thus, we can ask Halmos’ 8th problem in factors.

Halmos’ 8th Problem (factor version). Let M be a factor with separable predual. For every operator

a in M, is a can be expressed as a } ¨ }-limit of reducible operators in M?

In 2019, Junhao Shen and Rui Shi proved that for a type II1 factor M without Property Gamma, re-

ducible operators are nowhere dense in M in the operator norm. (https://doi.org/10.48550/arXiv.1907.00573)

But other cases are still open till now.
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6. Problems on Quantum Rényi Divergences (Contributed by Ke Li)

Rényi’s information divergence, defined for two probability densities, is a fundamental information

quantity. Its quantum generalization, due to the noncommutativity nature of density operators, can

take infinitely many possible forms. To identify the correct quantum generalization of Rényi’s informa-

tion divergence is significant and nontrivial. The key point is that a proper quantum Rényi divergence

should have precise operational meaning.

So far, there are two versions of quantum Rényi divergence that admit operational interpretations.

One is the sandwiched Rényi divergence [1, 2]

(6.1) D˚
αpρ}σq :“

1

α ´ 1
log Tr

`

σ
1´α
2α ρσ

1´α
2α

˘α
.

The other one is Petz’s Rényi divergence [3]

(6.2) Dαpρ}σq :“
1

α ´ 1
log Tr

`

ρασ1´α
˘

.

In Eq. (6.1) and Eq. (6.2), ρ and σ are density operators, and α P p0, 1q Y p1,8q is a real parameter.

Operational interpretations of D˚
α with α ě 1

2 are obtained, e.g., in Refs [4, 5, 6], and those of Dα with

α P p0, 1q can be seen in [7].

Problem 6.1. Can we find an operational interpretation for Dα with α P p1, 2q? Dα has nice properties

in this interval, and the duality relation of [8] indicates that the case α P p1, 2q is special.

Problem 6.2. What is the full picture of the quantum generalization of Rényi’s information diver-

gence? Is there any quantum Rényi divergence, other than Dα and D˚
α, admitting operationally mean-

ing?

Problem 6.3. For a bipartite density operator ρAB on Hilbert space HA b HB, define

I˚
αpA : Bqρ :“ min

σA,σB

D˚
αpρAB}σA b σBq,

where the minimization is over all density operators σA on HA and σB on HB. We ask whether I˚
α is

additive, in the sense that

I˚
αpA1A2 : B1B2qρbω “ I˚

αpA1 : B1qρ ` I˚
αpA2 : B2qω

for any density operators ρA1B1 and ωA2B2, and for all α ě 1
2 . This additivity property was shown in

the classical case for α P r1
2 ,8q [9], and recently proved in the quantum case for α P p1,8q [10]. It was

conjectured in [6] that it holds as well for α P r1
2 , 1q. However, the methods of [9, 10] do not seem to

work here.
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7. Problems on the parafermion vertex operator algebras (Contributed by Qing

Wang)

Coset construction and orbifold construction are two basic ways to construct new vertex operator

algebras from given ones. Parafermion vertex operator algebra Kpg, kq is a special kind of coset

construction related to affine vertex operator (super)algebras. It is the commutant of Heisenberg

vertex operator algebra in the simple affine vertex operator (super)algebra Lĝpk, 0q, where Lĝpk, 0q is

the integrable highest weight module with the positive integer level k for affine Lie algebra ĝ associated

to the basic classical simple Lie superalgebra g. The structure and representation theory of Kpg, kq

has been fully studied in the past ten years (see [1, 2, 3, 4, 5, 6, 7, 9, 10] ect.). The natural problem

next is the orbifold theory of the parafermion vertex operator algebra. From the generator results of

the parafermion vertex operator algebras associated to any basic classical simple Lie superalgebras[8],

we know that the parafermion vertex operator algebras associated to sl2 and ospp1|2q are the building

blocks for the rational parafermion vertex operator algebras. So it is important to first understand the

representation theory and orbifold theory of the parafermion vertex operator algebras associated to sl2

and ospp1|2q.

Problem 7.1. The classification of the irreducible modules of the rational parafermion vertex operator

algebra Kpospp1|2nq, kq and fusion rules.

Problem 7.2. The orbifold theory of the rational parafermion vertex operator algebra Kpospp1|2nq, kq

and their fusion rules.

Problem 7.3. The structure and representation theory of Kpospp1|2nq, kq at critical level.
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8. How to derive three-point function for critical (γ “ 2) Liouville CFT?

(Contributed by Baojun Wu)

The Liouville conformal field theory (Liouville CFT) was introduced by A. Polyakov in his path

integral formulation of String Theory [Pol81] and it served as a motivation for Belavin, Polyakov, and

Zamolodchickov in their work on conformal field theory [BPZ84]. It also plays a fundamental role in the

study of random surfaces, statistical physics, 4d supersymmetric Yang-Mills theory, and many other

fields of physics and mathematics. It corresponds to taking the particular action functional, called

Liouville action, defined for ϕ : Σ Ñ R on closed Riemann surface pΣ, gq by

(8.1) SΣpg, ϕq :“
1

4π

ż

Σ

`

|dϕ|2g ` QKgϕ ` 4πµeγϕ
˘

dvg.

where Kg is the scalar curvature and vg the volume form on Σ determined by the metric g. The

parameters of LCFT are cosmology constant µ ą 0, γ P p0, 2q and background charge Q “
γ
2 ` 2

γ . The

LCFT is described in terms of positive measure on a set DpΣq of (generalized) real-valued functions ϕ

on Σ. Expectation (denoted by x¨yΣ
g in what follows) under this measure is formally given as a path

integral

xF yΣ
g “

ż

DpΣq

F pϕqe´SΣpg,ϕqDϕ(8.2)

for suitable observables F : DpΣq Ñ C and Dϕ a formal Lebesgue measure on DpΣq. The basic

observables in LCFT are the vertex operators, which are formally defined by eαϕpzq, α P C and z P Σ.

The fundamental objects in the LCFT are correlation functions, which can be described by path integral

as follows. For z1, z2, ..., zn P Σ and α1, α2, .., αn P C

x

n
ź

i“1

eαiϕpziqyΣ
g(8.3)

This theory, with central charge cL :“ 1 ` 6Q2, has been extensively studied in theoretical physics.

This theory is constructed for γ ď 2 case in [DKRV16]. The fundamental problem in Liouville CFT is

to compute the three-point function on the Riemann sphere explicitly, this is achieved for γ ă 2 case

in [KRV17].

In the γ “ 2 case (also called the critical case), the mathematical definition of Liouville correlation

function needs a different renormalization from the γ ă 2 case. The three-point function in the γ “ 2

case is still finite, see [DKRV16, section 4]. One can ask how to compute the three-point function

explicitly in this case.

One possibility to solve this is using the strategy from Liouville quantum gravity and statistical

physics. In [AS21], Ang and Sun derive the joint law of CLEγ2 conformal radius by combining the

mating of trees strategy from [DMS14] and Liouville CFT. They first show the γ ă 2 case, then use

the coupling between CLE and Brownian loop soups to analysis the γ Ñ 2 behavior. The coupling
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between CLE4 and γ “ 2 Liouville theory is also developed recently in [AG23]. Can we use the joint

law of CLE4 conformal radius CLE4 to compute γ “ 2 three-point function in Liouville CFT?
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9. Problems on Tensor Category arising from Affine Vertex Operator Algebras

(Contributed by Jinwei Yang)

Tensor category structures on the representation category of affine Lie algebra pg have been studied

extensively by physicists and mathematicians since late 1980s. Mathematically, D. Kazhdan and G.

Lusztig ([KL1]-[KL5]) first constructed braided tensor category on the category of finite length modules

whose composition factors are integrable simple pg-modules when the level k plus the dual Coexter

number h_ is not positive rational, they also showed that this category is braided tensor equivalent

to the category of finite dimensional weight modules for the quantum group Uqpgq for q “ e
πi

r_pk`h_q ,

where r_ is the lacety of the finite dimensional Lie algebra g. Consequently, this category of affine Lie

algebra modules is rigid.

When the level k is positive integral, Y.-Z. Huang ([H1]) proved the category of pg-modules of level

k that are isomorphic to direct sums of integrable simple pg-modules of level k is a modular tensor

category, using (logarithmic) tensor category theory of vertex operator algebras developed by Huang,

J. Lepowsky and L. Zhang.

When the level k is admissible, i.e., k ` h_ “
p
q with pp, qq “ 1, p, q P Zě1 and

p ě

$

&

%

h_ if pr_, qq “ 1,

h if pr_, qq “ r_,

where h is the Coexter number of g, T. Creutzig, Huang and J. Yang ([CHY]) constructed braided

tensor categories on the category KLkpgq of pg-modules of level k that are isomorphic to direct sums

of simple modules for the simple affine vertex operator algebra Lkpgq. Later on, Creutzig ([C]) showed

that these categories are rigid if g is of type ADE and Creutzig, N. Genra and A. Linshaw ([CGL])

proved that the category is rigid if g is of type C. Rigidity for the remaining cases is still open:

Conjecture 9.1. The category KLkpgq is rigid for all g, and thus is a ribbon tensor category.

It is believed that there are correspondences, usually called Kazhdan-Lusztig correspondence, be-

tween KLkpgq and the braided tensor categories arising from the quantum groups:

Conjecture 9.2. The category KLkpgq is braided equivalent to the semisimplification of category of

tilting modules for the quantum group Uqpgq for q “ e
πi

r_pk`h_q .

Combining with the modularity of the tensor category arising from quantum groups (see for example

[R]), Conjecture 9.2 also implies:

Conjecture 9.3. The category KLkpgq (admissible k “ ´h_ `
p
q ) are modular in the following cases:

(1). g “ sln if and only if pq, nq “ 1.

(2). g P tso4n`1, sp2nu if and only if q odd.

(3). g “ so4n`3 if and only if q odd or q{2 odd.
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(4). g P tso4n, e7, f4u if q odd.

(5). g “ so4n`2 if pq, 4q “ 1.

(6). g “ te6, g2u if pq, 3q “ 1.

(7). g “ e8 for all q.

When the level plus the dual Coexter number is positive rational, but not admissible, we also would

like to know:

Conjecture 9.4. What tensor category structures can we construct? Are they rigid, semisimple or

modular?

There are some progress on Conjecture 9.4 in [CY], but in general the conjecture is still widely open.

For more details related to this problem set, please see also [CHY] and [H2].
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10. A Problem on L1 Poincare Inequality (Contributed by Qiang Zeng)

Let pN, τq be a noncommutative W ˚ probability space, where N is a finite von Neumann algebra and

τ is a normal faithful tracial state. Let Pt, t ě 0 be a noncommutative symmetric Markov semigroup

(i.e., each Pt is unital completely positive and trace preserving) acting on pN, τq with generator ´A on

L2pN, τq, where A is positive on L2pN, τq. We may define Meyer’s carré du champ on a dense subset

of N :

Γpf1, f2q “
1

2
rApf˚

1 qf2 ` f˚
1 Apf2q ´ Apf˚

1 f2qs

and

Γ2pf1, f2q “
1

2
rΓpAf˚

1 , f2q ` Γpf˚
1 , Apf2qq ´ AΓpf˚

1 f2qs,

whenever these quantities are well-defined for f1, f2 P N . Assume the fixed point algebra of Pt is

trivial so that limtÑ8 }Ptf ´ τpfq}2 “ 0 for f P L2pN, τq. A classic example of this setting is the

Ornstein–Uhlenbeck semigroup on N “ L8pRd, γdq, where γd is the d-dimensional standard Gaussian

measure on the Euclidean space Rd. In this case, we have ´A “ ∆ ´ x ¨ ∇, Γpf, fq “ |∇f |2 and

Γ2pf, fq “ |∇f |2 ` }∇2f}2,

where }∇2f}2 is the Hilbert–Schmidt norm of the Hessian of f . In this setting, we have Γpf, fq ď

Γ2pf, fq. This condition can be extended to much more general setting and is commonly known as the

Bakry–Emery condition Γ2pf, fq ě αΓpf, fq for α P R. On a Riemannian manifold, this condition is

equivalent to that the Ricci curvature is bounded from below by α (see e.g. [Le04, Le11]).

In the general noncommutative setting, the following problem is open:

Problem 10.1. Suppose Γ2pf, fq ě 0 and }f ´ τpfq}2 ď C}Γpf, fq1{2}2 (i.e., spectral gap exists) for

some absolute constant C ą 0. Prove that

}f ´ τpfq}1 ď C 1}Γpf, fq1{2}1

for some C 1 ą 0.

In classical probability and analysis, the conclusion holds. Indeed, we consider a metric measure

space pX, d, µq equipped with a separable Borel probability measure µ. Let B be a Borel set of X and

define the surface measure of B as

µ`pBq “ lim inf
εÑ0`

µpBεq ´ µpBq

ε

where Bε “ tx P X : Da P B, dpx, aq ă εu is the open ε-neighborhood of B. The modulus of the

gradient of a function f on X is

|∇fpxq| “ lim sup
dpx,yqÑ0`

|fpxq ´ fpyq|

dpx, yq
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and assign |∇fpxq| “ 0 if x is an isolated point. In this context, Cheeger’s inequality states that there

exists a constant c ą 0 such that

µpA`q ě cmintµpAq, µpAcqu, A Ă X Borel.

This is a type of isoperimetric inequalities, which compare the surface area of the boundary of a set

with its volume. It is well known that Cheeger’s inequality is equivalent to the following L1 Poinaré

inequality (see e.g. [BH97, Theorem 1.1] and also [Le11]):
ż

X
|∇f |dµ ě c

›

›

›

›

f ´

ż

X
fdµ

›

›

›

›

L1pµq

.

A classic result of Cheeger showed that Cheeger’s inequality implies the existence of spectrum gap, or

equivalently the ordinary L2 Poincaré inequality
›

›

›

›

f ´

ż

X
fdµ

›

›

›

›

2

L2pµq

ď C2

ż

X
|∇f |2dµ;

see e.g. [Le04]. The relationship among the three inequalities can be presented as

L1 Poincaré inequality ô Cheeger’s inequality ñ Spectral gap exists.

The proposed problem is about the reversed direction of the implication under additional conditions.

In [Le04, Theorem 5.2], Ledoux showed that in the Riemannian setting, the spectral gap and a lower

bound on Ricci curvature imply Cheeger’s inequality. This result goes back to Buser, and there are

also discrete versions; see [Le04] for more details.

The above discussion shows that the proposed problem is known in the classical setting. Part of

the proof is based on semigroups, which is relatively simple to extend to the noncommutative setting.

On the other hand, some properties of the underlying space are used in a crucial way in the proof.

To quote Ledoux [Le11], “In view of the preceding semigroup argument, such an additional ingredient

seems indeed unavoidable ...” Since there is no underlying space in the general noncommutative

setting, the proposed problem cannot be solved using the known commutative theory. For instance, in

the noncommutative setting, it is not even known how to formulate Cheeger’s inequality so that it is

equivalent to the L1 Poincaré inequality.
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11. Problems in Vertex Operator Algebras (Contributed by Hao Zhang and Bin Gui)

Let V “ ‘nPNVpnq be a C2-cofinite vertex operator algebra. We defined a VbM -module nXpWq,

called the dual fusion product associated to a VbN -module W and an pM,Nq-pointed compact Riemann

surface

X “ py1, ¨ ¨ ¨ , yM |C|x1, ¨ ¨ ¨ , xN q,

where y‚ (resp. x‚) are outgoing (resp. incoming) marked points [GZ23]. The contragredient module

of nXpWq is called the fusion product and is denoted by bXpWq. When W is a tensor product of

two V-modules and X “ p8|P1|0, 1q, bXpWq concides with the fusion product in the braided tensor

category ReppVq defined in [HLZ14, HLZ12a, HLZ12b, HLZ12c, HLZ12d, HLZ12e, HLZ12f, HLZ12g].

One of our final goal is to prove that ReppVq is a modular tensor category. It remains to prove:

Problem 11.1. Assume that V is self-dual. ReppVq is actually rigid (and hence modular).

When V is also rational, the proof of Problem 11.1 reduces to proving that some fusion coefficients

are nonzero. Geometrically, this kind of fusion coefficients is closely related to modular invariance

property [Zhu96, Hua05], or equivalently, sewing and factorization of genus 1 and genus 0 conformal

blocks.

In my talk in Sanya, with the help of dual fusion products, I gave a new version of sewing and

factorization theorem when V is not assumed to be rational. It is a higher genus version but when

focusing on genus 1 and genus 0, we have the following factorization isomorphism related to genus 1

and 1 point conformal blocks

T ˚
T pWq » HomVb2

`

bP1 pVq,nP1pWq
˘

.(11.1)

Problem 11.2. What is the relationship between (11.1) and the modular invariance given in [Miy04,

Hua23]? More precisely, what is the relationship between Miyamoto’s pseudotraces and dual fusion

products?

Algebraic geometrists are interested in the vector bundle structure of conformal blocks. In [DGT21,

DGT22], the authors proved that: when V is C2-cofinite and rational, conformal blocks will give vector

bundle structures on moduli space of stable pointed curves and satisfy a higher genus factorization

property. It is natural to ask:

Problem 11.3. When V is only C2-cofinite, is it possible that conformal blocks give vector bundle

structures on moduli of stable pointed curves?

I believe the answer will be negative. [DGK23] proposed a condition called smoothing to solve this

problem. But unfortunately, no examples of C2-cofinite and irrational vertex operator algebras are

known to satisfy the smoothing condition.
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12. Problems on Bohnenblust-Hille Inequalitiy (Contributed by Haonan Zhang)

In 1931, Bohnenblust and Hille [2] proved a remarkable inequality for the norm of Fourier transform

on polytorus. This inequality now is called Bohnenblust-Hille (BH) inequality. In 2001, Blei [1] proved

the BH inequality for Boolean cubes, and recently it was reproved by Defant, Masty lo, and Pérez [3]

with a much better constant.

Suppose f is a complex-valued function on the Boolean cubes t´1, 1un. The Fourier expansion of f

is defined as

f “
ÿ

SĎt1,2...,nu

f̂pSqχS ,

where χS is the characteristic function defined as

χSpxq :“
ź

jPS

xj , x “ pxjq
n
j“1.

The function f is said to have degree-d if f̂pSq “ 0 whenever |S| ą d, where |S| is the cardinality of S.

This kind of function has low complexity in the learning theory.

The BH inequality states that for a fixed d ą 1 and any function f with degree ď d, there exists

Cd ą 0 independent of n,

}f̂} 2d
d`1

:“

¨

˝

ÿ

|S|ďd

|f̂pSq|
2d
d`1

˛

‚

d`1
2d

ď Cd}f}8.

The best constant BHďd
t˘1u

of the BH inequality satisfies BHďd
t˘1u

ď C
?
d log d for some universal C ą 0

[3]. This BH inequality for t´1, 1un plays an important role in learning functions f : t´1, 1un Ñ r´1, 1s

of low degree using Oplog nq random queries [4]. In fact, the sample complexity has an explicit upper

bound in terms of BHďd
t˘1u

. Thus it is important to improve the bound of the best constant BHďd
t˘1u

.

It is extremely interesting to study the BH inequality for a larger category of symmetries such as

cyclic groups, more general discrete groups, and quantum symmetries. In 2023, the BH inequality for

qubits was established by Huang-Chen-Preskill [5] and Volberg-Zhang [6], which can be regarded as a

noncommutative version of BH inequality.

Problem 12.1. What is the best constant of the Bohnenblust-Hille inequalities for known symmetries?

The quantum torus is an analogy of torus in noncomutative geometry (we refer to [7] for the details of

quantum tori and reference therein). Does Bohnenblust-Hille inequality hold for quantum tori?

‚ The BH inequality could be formulated for planar algebras. We guess that the best constant

should depend on the depth of the planar algebra. However, the difficulty is to find a nice

sufficient condition for the inequality. (Jinsong Wu)
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13. Problems on Quasi-local Algebras (Contributed by Jiawen Zhang)

Given a discrete metric space pX, dq of bounded geometry, we can associate the uniform Roe algebra

C˚
upXq and the uniform quasi-local algebra C˚

uqpXq. These are C˚-subalgebras in Bpℓ2pXqq, coming

from higher index theory [3, 4]. It was proved in [4] that if the underlying space X has Yu’s Property

A [5], then C˚
upXq “ C˚

uqpXq. Recently, it was proved by Ozawa in [2] that if the space X contains a

sequence of expander graphs, then C˚
upXq ‰ C˚

uqpXq. However, the general picture is far from clear.

We are interested in the following question:

Problem 13.1. For a discrete metric space pX, dq of bounded geometry, can we characterise C˚
upXq “

C˚
uqpXq using the coarse geometry of the underlying space? More precisely, does C˚

upXq “ C˚
uqpXq

implies that X has Yu’s Property A?

We are also interested in their K-theories. Hence we also ask the following:

Problem 13.2. Can we have a criterion to ensure that C˚
upXq and C˚

uqpXq have the same K-theories

(e.g., X can be coarsely embedded into Hilbert space)?

Furthermore, we can consider the more general groupoid setting [1] and ask similar questions:

Problem 13.3. For a locally compact Hausdorff and étale groupoid, can we characterise C˚
r pGq “

C˚
uqpGqG using certain property of G? More precisely, does C˚

upXq “ C˚
uqpXq implies that G is (topo-

logically) amenable?
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14. Problems on Irreducible Approximation (Contributed by Sen Zhu)

Let H be a complex separable Hilbert space and BpHq be the collection of bounded linear operators

on H. An invariant subspace of an operator T P BpHq means a closed subspace M of H such that

T pMq Ă M. We let Lat T denote the collection of invariant subspaces of T . Invariant subspaces are

suitable infinite-dimensional substitutes of eigenvalues for matrices. Usually, it is difficult to describe

Lat T . A fundamental problem in operator theory is the so called Invariant Subspace Problem, which

asks whether every bounded linear operator T on an separable infinite dimensional Hilbert space has

a nontrivial invariant subspace [5]. The problem remains open till now.

Naturally, people turn to consider a special subclass of Lat T , that is, RedT fi Lat T X Lat T ˚.

Here T ˚ denotes the adjoint of T . Each element of RedT is called a reducing subspace of T . Clearly,

t0u,H P RedT . T is said to be irreducible if RedT “ tt0u,Hu; otherwise, T is said to be reducible.

Irreducible operators have the simplest lattices of reducing subspaces, and can be viewed as the smallest

operator units in the reduction sense. So, in order to understand a special class of operators, it is basic

to classify those irreducible ones in it. Still, it is often difficult to achieve this.

In 1968, Halmos [3] proved an interesting approximation result, which provides an approximation

approach to the study of reducing subspaces.

Theorem 14.1. The set of irreducible operators on a separable Hilbert space is a dense Gδ set.

The preceding result shows that irreducible operators on H constitute a topologically large subset

of BpHq. In 1970, P. Halmos [4] raised ten problems in Hilbert spaces and his Problem 8 asked: Is

every operator the norm limit of reducible ones? In 1976, D. Voiculescu [11] proved the well-known

noncommutative Weyl-von Neumann theorem, solving Halmos’ problem in the positive.

These results inspire the following terminology. A subset F of BpHq is said to have the irreducible

(reducible) approximation property, if those irreducible (reducible) ones in F are norm dense in F .

For convenience, we write IAP for “irreducible approximation property” and write RAP for “reducible

approximation property”. Hence the results of P. Halmos and D. Voiculescu show that BpHq simulta-

neously have the IAP and the RAP.

To understand the structure of a special operator class F Ă BpHq, it is natural to consider whether

F enjoys the IAP or the RAP. In the finite-dimensional case, it is easy to see that any set F can not

have the IAP and RAP simultaneously. Also one can show that many classes of matrices have the

IAP such as the classes of Toeplitz matrices, Hankel matrices, stochastic matrices, complex symmetric

matrices, and skew-symmetric matrices of order greater than 2 (see [6]).

In the infinite dimensional case, several progresses have been made. By a result of D. Herrero and

C. Jiang [7], the class of operators with connected spectra enjoy the IAP. By a result of Y. Ji and C.

Jiang [8], the class of Cowen-Douglas operators enjoy the IAP. In [9], it is proved that the class of

complex symmetric operators simultaneously have the IAP and the RAP. In [1], it is proved that the

class of skew-symmetric operators have the IAP.
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We are interested in determining whether several operator classes consisting of Toeplitz operators

have the IAP or the RAP. Toeplitz operators are those bounded linear operators on l2pNq induced by

infinite Toeplitz matrices of the form
»

—

—

—

—

–

α0 α´1 α´2 ¨ ¨ ¨

α1 α0 α´1 ¨ ¨ ¨

α2 α1 α0 ¨ ¨ ¨

...
...

...
. . .

fi

ffi

ffi

ffi

ffi

fl

.

Such an operator is uniquely determined by a function ϕ in L8pTq with ϕpeiθq “
ř8

n“´8 ane
inθ being

its Fourier series, where T “ tz P C : |z| “ 1u. So we can rewrite it as Tϕ and call ϕ the symbol of Tϕ.

Toeplitz operators are among the most studied Hilbert space operators and have found applications in

a wide variety of areas such as physics, probability theory, information and control theory. The reader

is referred to [2] and [10] for more about Toeplitz operators.

Given a subset E of L8pTq, we denote TE “ tTϕ : ϕ P Eu. Thus TL8pTq is exactly the class of

Toeplitz operators.

Problem 14.1. Does TL8pTq enjoy the IAP or the RAP?

There are also some important subclasses of TL8pTq such as the class TH8 of analytic Toeplitz

operators and TCpTq, where H8 denotes the collection of bounded analytic functions on |z| ă 1 and

CpTq denotes the collection of continuous functions on T. Now it has been shown that TCpTq has the

IAP and TH8 does not have the RAP (see [6]).

Problem 14.2. Does TH8 have the IAP?

Problem 14.3. Does TCpTq have the RAP?

To solve the preceding problems, it is important to solve the following problem.

Problem 14.4. How to determine whether a Toeplitz operator is irreducible? (Zhengwei Liu)
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